$$M_{32} = \begin{vmatrix} 2 & 5 \\ 6 & 4 \end{vmatrix} = 8 - 30 = -22; \qquad A_{32} = (-1)^{3+2} (-22) = 22$$
$$M_{33} = \begin{vmatrix} 2 & -3 \\ 6 & 0 \end{vmatrix} = 0 + 18 = 18; \qquad A_{33} = (-1)^{3+3} (18) = 18$$

and

Now So

 $a_{11} = 2, a_{12} = -3, a_{13} = 5; A_{31} = -12, A_{32} = 22, A_{33} = 18$

$$a_{11} A_{31} + a_{12} A_{32} + a_{13} A_{33}$$

= 2 (-12) + (-3) (22) + 5 (18) = -24 - 66 + 90 = 0

EXERCISE 4.4

Write Minors and Cofactors of the elements of following determinants:

1. (i)
$$\begin{vmatrix} 2 & -4 \\ 0 & 3 \end{vmatrix}$$
 (ii) $\begin{vmatrix} a & c \\ b & d \end{vmatrix}$
2. (i) $\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$ (ii) $\begin{vmatrix} 1 & 0 & 4 \\ 3 & 5 & -1 \\ 0 & 1 & 2 \end{vmatrix}$
3. Using Cofactors of elements of second row, evaluate $\Delta = \begin{vmatrix} 5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3 \end{vmatrix}$
4. Using Cofactors of elements of third column, evaluate $\Delta = \begin{vmatrix} 1 & x & yz \\ 1 & y & zx \\ 1 & z & xy \end{vmatrix}$.

5. If $\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$ and A_{ij} is Cofactors of a_{ij} , then value of Δ is given by

(A)
$$a_{11}A_{31} + a_{12}A_{32} + a_{13}A_{33}$$
 (B) $a_{11}A_{11} + a_{12}A_{21} + a_{13}A_{31}$
(C) $a_{21}A_{11} + a_{22}A_{12} + a_{23}A_{13}$ (D) $a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31}$

4.6 Adjoint and Inverse of a Matrix

In the previous chapter, we have studied inverse of a matrix. In this section, we shall discuss the condition for existence of inverse of a matrix.

To find inverse of a matrix A, i.e., A^{-1} we shall first define adjoint of a matrix.

4.6.1 Adjoint of a matrix

Definition 3 The adjoint of a square matrix $A = [a_{ij}]_{n \times n}$ is defined as the transpose of the matrix $[A_{ij}]_{n \times n}$, where A_{ij} is the cofactor of the element a_{ij} . Adjoint of the matrix A is denoted by adj A.

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Then
$$adj A = Transpose of \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix}$$

Example 23 Find *adj* A for A = $\begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$ Solution We have A₁₁ = 4, A₁₂ = -1, A₂₁ = -3, A₂₂ = 2 Hence *adj* A = $\begin{bmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \end{bmatrix} = \begin{bmatrix} 4 & -3 \\ -1 & 2 \end{bmatrix}$

Remark For a square matrix of order 2, given by

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

The *adj* A can also be obtained by interchanging a_{11} and a_{22} and by changing signs of a_{12} and a_{21} , i.e.,

Change sign Interchange

We state the following theorem without proof.

Theorem 1 If A be any given square matrix of order *n*, then

$$A(adj A) = (adj A) A = |A|I,$$

where I is the identity matrix of order n

Verification

Let
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
, then $adj \ A = \begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix}$

Since sum of product of elements of a row (or a column) with corresponding cofactors is equal to |A| and otherwise zero, we have

$$A (adj A) = \begin{bmatrix} |A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A| \end{bmatrix} = |A| \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = |A| I$$

Similarly, we can show (adj A) A = |A| I

Hence A (adj A) = (adj A) A = |A| I

Definition 4 A square matrix A is said to be singular if |A| = 0.

For example, the determinant of matrix $A = \begin{bmatrix} 1 & 2 \\ 4 & 8 \end{bmatrix}$ is zero Hence A is a singular matrix.

Definition 5 A square matrix A is said to be non-singular if $|A| \neq 0$

Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
. Then $|A| = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 4 - 6 = -2 \neq 0$.

Hence A is a nonsingular matrix

We state the following theorems without proof.

Theorem 2 If A and B are nonsingular matrices of the same order, then AB and BA are also nonsingular matrices of the same order.

Theorem 3 The determinant of the product of matrices is equal to product of their respective determinants, that is, |AB| = |A| |B|, where A and B are square matrices of the same order

Remark We know that
$$(adj A) A = |A| I = \begin{bmatrix} |A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A| \end{bmatrix}, |A| \neq 0$$

Writing determinants of matrices on both sides, we have

$$|(adj A) A| = \begin{vmatrix} |A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A| \end{vmatrix}$$

i.e.
$$|(adj A)| |A| = |A|^{3} \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

i.e.
$$|(adj A)| |A| = |A|^{3} (1)$$

i.e.
$$|(adj A)| = |A|^2$$

In general, if A is *a* square matrix of order *n*, then $|adj(A)| = |A|^{n-1}$.

Theorem 4 A square matrix A is invertible if and only if A is nonsingular matrix. **Proof** Let A be invertible matrix of order *n* and I be the identity matrix of order *n*. Then, there exists a square matrix B of order *n* such that AB = BA = I

Now
$$AB = I$$
. So $|AB| = |I|$ or $|A| |B| = 1$ (since $|I|=1, |AB|=|A||B|$)

(Theorem 1)

This gives $|A| \neq 0$. Hence A is nonsingular.

Conversely, let A be nonsingular. Then $|A| \neq 0$

Now

A
$$(adj A) = (adj A) A = |A|I$$

A $\left(\frac{1}{|A|}adj A\right) = \left(\frac{1}{|A|}adj A\right) A = I$

....

or

or

AB = BA = I, where $B = \frac{1}{|A|} adj A$

A is invertible and $A^{-1} = \frac{1}{|A|} a dj A$

Thus

Example 24 If $A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$, then verify that A *adj* A = |A| | I. Also find A^{-1} . Solution We have $|A| = 1(16 - 9) - 3(4 - 3) + 3(3 - 4) = 1 \neq 0$

Now $A_{11} = 7$, $A_{12} = -1$, $A_{13} = -1$, $A_{21} = -3$, $A_{22} = 1$, $A_{23} = 0$, $A_{31} = -3$, $A_{32} = 0$, $A_{33} = 1$ $adj \mathbf{A} = \begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \end{bmatrix}$ Therefore

$$\begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$$
Now
$$A (adj A) = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix} \begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 7 - 3 - 3 & -3 + 3 + 0 & -3 + 0 + 3 \\ 7 - 4 - 3 & -3 + 4 + 0 & -3 + 0 + 3 \\ 7 - 4 - 3 & -3 + 4 + 0 & -3 + 0 + 3 \\ 7 - 3 - 4 & -3 + 3 + 0 & -3 + 0 + 4 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = (1) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = |A| \cdot I$$
Also
$$A^{-1} = \frac{1}{|A|} a \, dj A = \frac{1}{1} \begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

ŀ

Example 25 If $A = \begin{bmatrix} 2 & 3 \\ 1 & -4 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}$, then verify that $(AB)^{-1} = B^{-1}A^{-1}$. Solution We have AB = $\begin{bmatrix} 2 & 3 \\ 1 & -4 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 5 & -14 \end{bmatrix}$

 $|AB| = -11 \neq 0$, $(AB)^{-1}$ exists and is given by Since,

$$(AB)^{-1} = \frac{1}{|AB|} adj (AB) = -\frac{1}{11} \begin{bmatrix} -14 & -5 \\ -5 & -1 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 14 & 5 \\ 5 & 1 \end{bmatrix}$$

Further, $|A| = -11 \neq 0$ and $|B| = 1 \neq 0$. Therefore, A^{-1} and B^{-1} both exist and are given by

$$\mathbf{A}^{-1} = -\frac{1}{11} \begin{bmatrix} -4 & -3 \\ -1 & 2 \end{bmatrix}, \mathbf{B}^{-1} = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$$

Therefore
$$B^{-1}A^{-1} = -\frac{1}{11}\begin{bmatrix}3 & 2\\1 & 1\end{bmatrix}\begin{bmatrix}-4 & -3\\-1 & 2\end{bmatrix} = -\frac{1}{11}\begin{bmatrix}-14 & -5\\-5 & -1\end{bmatrix} = \frac{1}{11}\begin{bmatrix}14 & 5\\5 & 1\end{bmatrix}$$

Hence $(AB)^{-1} = B^{-1} A^{-1}$

Example 26 Show that the matrix $A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ satisfies the equation $A^2 - 4A + I = O$, where I is 2 × 2 identity matrix and O is 2 × 2 zero matrix. Using this equation, find A^{-1} .

Solution We have
$$A^2 = A \cdot A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 12 \\ 4 & 7 \end{bmatrix}$$

Hence $A^2 - 4A + I = \begin{bmatrix} 7 & 12 \\ 4 & 7 \end{bmatrix} - \begin{bmatrix} 8 & 12 \\ 4 & 8 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = O$

Now

Therefore

or

or

or

or

Hence

A A - 4A = - I A A (A⁻¹) - 4 A A⁻¹ = - I A⁻¹ (Post multiplying by A⁻¹ because |A| \neq 0) A (A A⁻¹) - 4I = - A⁻¹ AI - 4I = - A⁻¹ A⁻¹ = 4I - A = $\begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} - \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$ A⁻¹ = $\begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$

EXERCISE 4.5

Find adjoint of each of the matrices in Exercises 1 and 2.

1.
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 2. $\begin{bmatrix} 1 & -1 & 2 \\ 2 & 3 & 5 \\ -2 & 0 & 1 \end{bmatrix}$

 $A^2 - 4A + I = O$

Verify A (adj A) = (adj A) A = |A| I in Exercises 3 and 4

3.
$$\begin{bmatrix} 2 & 3 \\ -4 & -6 \end{bmatrix}$$
 4. $\begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix}$

Find the inverse of each of the matrices (if it exists) given in Exercises 5 to 11.

5. $\begin{bmatrix} 2 & -2 \\ 4 & 3 \end{bmatrix}$ **6.** $\begin{bmatrix} -1 & 5 \\ -3 & 2 \end{bmatrix}$ **7.** $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5 \end{bmatrix}$ **8.** $\begin{bmatrix} 1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & 1 \end{bmatrix}$ **9.** $\begin{bmatrix} 2 & 1 & 3 \\ 4 & -1 & 0 \\ -7 & 2 & 1 \end{bmatrix}$ **10.** $\begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}$ $11. \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha \end{bmatrix}$ **12.** Let $A = \begin{bmatrix} 3 & 7 \\ 2 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 6 & 8 \\ 7 & 9 \end{bmatrix}$. Verify that $(AB)^{-1} = B^{-1} A^{-1}$. **13.** If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$, show that $A^2 - 5A + 7I = O$. Hence find A^{-1} . 14. For the matrix $A = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$, find the numbers *a* and *b* such that $A^2 + aA + bI = O$. **15.** For the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & 1 & 2 \end{bmatrix}$ Show that $A^{3}-6A^{2}+5A+11$ I = O. Hence, find A^{-1} . **16.** If $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ Verify that $A^3 - 6A^2 + 9A - 4I = O$ and hence find A^{-1} 17. Let A be a nonsingular square matrix of order 3×3 . Then |adj| A | is equal to (B) $|A|^2$ (C) $|A|^{3}$ (A) |A|(D) 3|A| **18.** If A is an invertible matrix of order 2, then det (A^{-1}) is equal to (B) $\frac{1}{\det(A)}$ (C) 1 (A) det (A)(D) 0